(*Function Definition*)
FactorC[p_, x_] :=
Times @@ Cases[Roots[p == 0, x, Cubics -> False], u_ == v_ -> x - v]
PartialFractionsC[p_,
x_] := (Apart[Numerator[#1]/FactorC[Denominator[#1], x], x] &)[
Together[p]]
(*Example: Transfer function to be decomposed*)
R := (A s)/(s^2 + \[Omega]^2)
PartialFractionsC[R, s]
A/(2 (s - I \[Omega])) + A/(2 (s + I \[Omega]))
Wednesday, August 4, 2010
Partial Fraction Expansion over Complex Numbers with Mathematica
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment